Probability theory - Class test 1

27 Feb, 2010, 10:00-12:00
Answer any five questions

Problem 1. [6 marks + 4 marks]

(1) Let $\mu_{n}, \mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$. Assume that μ_{n} has density f_{n} and μ has density f w.r.t Lebesgue measure on \mathbb{R}^{d}. If $f_{n}(t) \rightarrow f(t)$ for a.e. t (with respect to Lebesgue measure), then show that $\mu_{n} \xrightarrow{d} \mu$.
(2) Show that $N\left(\mu_{n}, \sigma_{n}^{2}\right) \xrightarrow{d} N(\mu, \sigma)$ if and only if $\mu_{n} \rightarrow \mu$ and $\sigma_{n}^{2} \rightarrow \sigma^{2}$.

Problem 2. [6 marks + 4 marks]

(1) Let $X \sim \Gamma(\alpha, 1)$ and $Y \sim \Gamma\left(\alpha^{\prime}, 1\right)$ be independent random variables on a common probability space. Find the distribution of $\frac{X}{X+Y}$.
(2) With X and Y as above, find the distribution of $X+Y$.

Problem 3. [4 marks + $\mathbf{6}$ marks] On the probabiity space $([0,1], \mathcal{B}, \mathbf{m})$, for $k \geq 1$, define the functions

$$
X_{k}(t):= \begin{cases}0 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j}{2^{k}}, \frac{2 j+1}{2^{k}}\right) . \\ 1 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j+1}{2^{k}}, \frac{2 j+2}{2^{k}}\right) \text { or } t=1 .\end{cases}
$$

(1) For any $n \geq 1$, what is the distribution of X_{n} ?
(2) For any fixed $n \geq 1$, find the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$.

Problem 4. [6 marks + 4 marks]

(1) Let $\Omega=\{1,2, \ldots, n\}$. For a probability measure \mathbf{P} on Ω, we define it "entropy" $H(\mathbf{P}):=-\sum_{k=1}^{n} p_{k} \log p_{k}$ where $p_{k}=\mathbf{P}\{k\}$ and it is understood that $x \log x=0$ if $x=0$. Show that among all probability measures on Ω, the uniform probability measure (the one with $p_{k}=\frac{1}{n}$ for each k) is the unique maximizer of entropy.
(2) Let X be a non-negative random variable. If $\mathbf{E}[X] \leq 1$, then show that $\mathbf{E}\left[X^{-1}\right] \geq 1$.

Problem 5. [4 marks + 6 marks]

(1) If $\mu_{n} \ll v$ for each n and $\mu_{n} \xrightarrow{d} \mu$, then is it necessarily true that $\mu \ll v$? If $\mu_{n} \perp v$ for each n and $\mu_{n} \xrightarrow{d} \mu$, then is it necessarily true that $\mu \perp v$? In either case, justify or give a counterexample.
(2) Suppose X, Y are independent (real-valued) random variables with distribution μ and v respectively. If at least one of μ or v is absolutely continuous w.r.t Lebesgue measure, show that the distribution of $X+Y$ is also absolutely continuous w.r.t Lebesgue measure.

Problem 6. [5 marks + 5 marks]

(1) Suppose $\left\{\mu_{\alpha}: \alpha \in I\right\}$ and $\left\{\nu_{\beta}: \alpha \in J\right\}$ are two families of Borel probability measures on \mathbb{R}. If both these families are tight, show that the family $\left\{\mu_{\alpha} \otimes v_{\beta}: \alpha \in I, \beta \in J\right\}$ is also tight.
(2) Suppose $\left\{X_{\alpha}: \alpha \in I\right\}$ and $\left\{Y_{\beta}: \alpha \in J\right\}$ are two families of real-valued random variables on the same probability space. If the two families are tight (i.e., the family of their distributions are tight), then show that the family $\left\{X_{\alpha}+Y_{\beta}: \alpha \in I, \beta \in J\right\}$ is also tight.

